img_2289.jpg

POLLS

What do you like in the e-puck robot?
 
Print
Written by Administrator   
Wednesday, 24 November 2010 14:40

The reference publication on the e-puck robot is:

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D. and Martinoli, A. (2009) The e-puck, a Robot Designed for Education in Engineering. Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, 1(1) pp. 59-65.

Publications that mention the e-puck robot (cronological order) are listed below. If you have a publication using the e-puck and not listed here plase send the bibtex information to This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

[1] Yating Zheng, Cristián Huepe, and Zhangang Han. Experimental capabilities and limitations of a position-based control algorithm for swarm robotics. Adaptive Behavior, 0(0):1059712320930418, 0. [ bib | DOI | arXiv | www: ]
[2] Mattias Jacobsson, Ylva Fernaeus, and Lars Erik Holmquist. Glowbots: designing and implementing engaging human-robot interaction, 2008-06. [ bib ]
[3] S. Ljungblad, K. Walter, M. Jacobsson, and L.E. Holmquist. Designing personal embodied agents with personas. In ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication, pages 575--580, 2006. [ bib | DOI ]
[4] Nikolaus Correll, Christopher M. Cianci, Xavier Raemy, and Alcherio Martinoli. Self-organized embedded sensor/actuator networks for ""smart"" turbines. 2006. [ bib ]
[5] A. Acerbi, F. Cecconi, D. Marocco, and S. Zappacosta. Individual vs Social Learning in a Population of Autonomous Robots. In Proceedings of the ECAL, pages 10--14, 2007. [ bib ]
[6] Yong Xu, Matthieu Guillemot, and Toyoaki Nishida. An experiment study of gesture-based human-robot interface. In 2007 IEEE/ICME International Conference on Complex Medical Engineering, pages 457--463, 2007. [ bib | DOI ]
[7] Jim Pugh and Alcherio Martinoli. The cost of reality: Effects of real-world factors on multi-robot search. In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 397--404, 2007. [ bib | DOI ]
[8] Saeed Amizadeh, Majid Nili Ahmadabadi, Babak N. Araabi, and Roland Siegwart. A bayesian approach to conceptualization using reinforcement learning. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics, pages 1--7, 2007. [ bib | DOI ]
[9] Pierre Roduit, Alcherio Martinoli, and Jacques Jacot. A quantitative method for comparing trajectories of mobile robots using point distribution models. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2441--2448, 2007. [ bib | DOI ]
[10] Jim Pugh and Alcherio Martinoli. Inspiring and modeling multi-robot search with particle swarm optimization. In 2007 IEEE Swarm Intelligence Symposium, pages 332--339, 2007. [ bib | DOI ]
[11] Jim Pugh and Alcherio Martinoli. Parallel learning in heterogeneous multi-robot swarms. In 2007 IEEE Congress on Evolutionary Computation, pages 3839--3846, 2007. [ bib | DOI ]
[12] Farzad Rastegar and Majid Nili Ahmadabadi. Grounding abstraction in sensory experience. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics, pages 1--8, 2007. [ bib | DOI ]
[13] O. Gigliotta and S. Nolfi. Formation of spatial representations in evolving autonomous robots. In IEEE Symposium on Artificial Life, 2007. ALIFE'07, pages 171--178, 2007. [ bib ]
[14] Giovanni Pini, Elio Tuci, and Marco Dorigo. Evolution of social and individual learning in autonomous robots. In IN: ECAL WORKSHOP: SOCIAL LEARNING IN EMBODIED AGENTS, 2007. [ bib ]
[15] Herianto Herianto, Toshiki Sakakibara, and Daisuke Kurabayashi. Artificial pheromone system using rfid for navigation of autonomous robots. Journal of Bionic Engineering - J BIONIC ENG, 4:245--253, 12 2007. [ bib | DOI ]
[16] Mattias Jacobsson, Sara Ljungblad, Johan Bodin, Jeffrey Knurek, and Lars Holmquist. Glowbots: Robots that evolve relationships. 01 2007. [ bib | DOI ]
[17] Davide Marocco and Alberto Acerbi. Adaptation and social facilitation in a population of autonomous robots. In Proceedings of the Seventh International Conference on Epigenetic Robotics, pages 85--91, Lund, 2007. LUCS. [ bib ]
[18] Christopher M. Cianci, Thomas Lochmatter, Jim Pugh, and Alcherio Martinoli. Toward multi-level modeling of robotic sensor networks: A case study in acoustic event monitoring. In Proceedings of the 1st International Conference on Robot Communication and Coordination, RoboComm '07. IEEE Press, 2007. [ bib ]
[19] Sara Ljungblad and Lars Erik Holmquist. Transfer scenarios: Grounding innovation with marginal practices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '07, page 737–746, New York, NY, USA, 2007. Association for Computing Machinery. [ bib | DOI | http ]
[20] Alberto Acerbi, Davide Marocco, and Stefano Nolfi. Social facilitation on the development of foraging behaviors in a population of autonomous robots. In Fernando Almeida e Costa, Luis Mateus Rocha, Ernesto Costa, Inman Harvey, and António Coutinho, editors, Advances in Artificial Life, pages 625--634, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. [ bib ]
[21] Christopher M. Cianci, Xavier Raemy, Jim Pugh, and Alcherio Martinoli. Communication in a swarm of miniature robots: The e-puck as an educational tool for swarm robotics. In Erol Sahin, William M. Spears, and Alan F. T. Winfield, editors, Swarm Robotics, pages 103--115, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. [ bib ]
[22] T. Gonos and B. Webb. Using homeostatic neurons for sensor self-calibration, 2008. [ bib ]
[23] H. Fukuda and K. Ueda. The Difference in the Manner of Interacting with a Moving Robot Influences Animacy Perception. In Proceedings of the 30th Annual Conference of the Cognitive Science Society, pages 2480--2484, 2008. [ bib ]
[24] Giovanni Pini and Elio Tuci. On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach. Connection Science, 20(2-3):211--230, 2008. [ bib | DOI | arXiv | www: ]
[25] Alvaro Gutiérrez, Alexandre Campo, Marco Dorigo, Daniel Amor, Luis Magdalena, and Félix Monasterio-Huelin. An open localization and local communication embodied sensor. Sensors, 8(11):7545--7563, 2008. [ bib | DOI | http ]
[26] E.A. Antonelo, B. Schrauwen, and D. Stroobandt. Event detection and localization for small mobile robots using reservoir computing. Neural Networks, 21(6):862--871, 2008. Computational and Biological Inspired Neural Networks, selected papers from ICANN 2007. [ bib | DOI | http ]
[27] Birger Johansson and Christian Balkenius. Learning to anticipate the movements of intermittently occluded objects. In Christian Balkenius, editor, Proceedings of the Eighth International Conference on Epigenetic Robotics, volume 139, pages 54--60. Lund University Cognitive Studies, 2008. Epigenetic Robotics ; Conference date: 30-07-2008. [ bib ]
[28] Konstantinos Ioannidis, Georgios Ch. Sirakoulis, and Ioannis Andreadis. A cellular automaton collision-free path planner suitable for cooperative robots. In 2008 Panhellenic Conference on Informatics, pages 256--260, 2008. [ bib | DOI ]
[29] Peter Dürr, Claudio Mattiussi, Andrea Soltoggio, and Dario Floreano. Evolvability of neuromodulated learning for robots. In 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems (LAB-RS), pages 41--46, 2008. [ bib | DOI ]
[30] Michael Siebold and James Hereford. Easily scalable algorithms for dispersing autonomous robots. In IEEE SoutheastCon 2008, pages 545--550, 2008. [ bib | DOI ]
[31] Thomas Lochmatter, Pierre Roduit, Chris Cianci, Nikolaus Correll, Jacques Jacot, and Alcherio Martinoli. Swistrack - a flexible open source tracking software for multi-agent systems. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4004--4010, 2008. [ bib | DOI ]
[32] Christopher M. Cianci, Julien Nembrini, Amanda Prorok, and Alcherio Martinoli. Assembly of configurations in a networked robotic system: A case study on a reconfigurable interactive table lamp. In 2008 IEEE Swarm Intelligence Symposium, pages 1--7, 2008. [ bib | DOI ]
[33] Genci Capi, Genci Pojani, and Shin-Ichiro Kaneko. Evolution of task switching behaviors in real mobile robots. In 2008 3rd International Conference on Innovative Computing Information and Control, pages 495--495, 2008. [ bib | DOI ]
[34] Yasser Mohammad and Toyoaki Nishida. Getting feedback from a miniature robot. In 2008 International Conference on Information and Automation, pages 941--947, 2008. [ bib | DOI ]
[35] Yasser Mohammad and Toyoaki Nishida. Human adaptation to a miniature robot: Precursors of mutual adaptation. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, pages 124--129, 2008. [ bib | DOI ]
[36] Fady Alnajjar, Indra Bin Mohd Zin, and Kazuyuki Murase. A spiking neural network with dynamic memory for a real autonomous mobile robot in dynamic environment. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages 2207--2213, 2008. [ bib | DOI ]
[37] Christopher M. Cianci, Jim Pugh, and Alcherio Martinoli. Exploration of an incremental suite of microscopic models for acoustic event monitoring using a robotic sensor network. In 2008 IEEE International Conference on Robotics and Automation, pages 3290--3295, 2008. [ bib | DOI ]
[38] Leandro Soriano Marcolino and Luiz Chaimowicz. No robot left behind: Coordination to overcome local minima in swarm navigation. In 2008 IEEE International Conference on Robotics and Automation, pages 1904--1909, 2008. [ bib | DOI ]
[39] Stéphane Magnenat, Philippe Retornaz, Basilio Noris, Francesco Mondada, and Emanuele Menegatti. Scripting the swarm: event-based control of microcontroller-based robots. 01 2008. [ bib ]
[40] Masanori Sugisaka, H. Tanaka, Vlad Trifa, Christopher Cianci, and Dominique Guinard. Dynamic control of a robotic swarm using a service-oriented architecture. 01 2008. [ bib ]
[41] Onofrio Gigliotta and Stefano Nolfi. On the coupling between agent internal and agent/ environmental dynamics: Development of spatial representations in evolving autonomous robots. Connection Science - CONNECTION, 16, 04 2008. [ bib | DOI ]
[42] Amanda Whitbrook, Uwe Aickelin, and Jonathan Garibaldi. Genetic-algorithm seeding of idiotypic networks for mobile-robot navigation. volume 1, pages 5--14, 05 2008. [ bib ]
[43] Ke Cheng and Raj Dasgupta. Coalition game-based distributed coverage of unknown environments by robot swarms. pages 1191--1194, 01 2008. [ bib | DOI ]
[44] Valerio Sperati, Vito Trianni, and Stefano Nolfi. Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intelligence, 2:73--95, 12 2008. [ bib | DOI ]
[45] W. Burgard et al. Audio-Visual Detection of Multiple Chirping Robots. Intelligent Autonomous Systems 10: IAS-10, page 324, 2008. [ bib ]
[46] Mattias Jacobsson, Johan Bodin, and Lars Erik Holmquist. The see-puck: A platform for exploring human-robot relationships. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '08, page 141–144, New York, NY, USA, 2008. Association for Computing Machinery. [ bib | DOI | http ]
[47] Hadi Firouzi, Majid Nili Ahmadabadi, and Babak N. Araabi. A probabilistic reinforcement-based approach to conceptualization. International Journal of Computer and Information Engineering, 2(1):66 -- 73, 2008. [ bib | http ]
[48] Stéphane Magnenat, Basilio Noris, and Francesco Mondada. Aseba-challenge: An open-source multiplayer introduction to mobile robots programming. In Panos Markopoulos, Boris de Ruyter, Wijnand IJsselsteijn, and Duncan Rowland, editors, Fun and Games, pages 65--74, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[49] Iñaki Navarro, Álvaro Gutiérrez, Fernando Matía, and Félix Monasterio-Huelin. An approach to flocking of robots using minimal local sensing and common orientation. In Emilio Corchado, Ajith Abraham, and Witold Pedrycz, editors, Hybrid Artificial Intelligence Systems, pages 616--624, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[50] Louis-Emmanuel Martinet, Jean-Baptiste Passot, Benjamin Fouque, Jean-Arcady Meyer, and Angelo Arleo. Map-based spatial navigation: A cortical column model for action planning. In Christian Freksa, Nora S. Newcombe, Peter Gärdenfors, and Stefan Wölfl, editors, Spatial Cognition VI. Learning, Reasoning, and Talking about Space, pages 39--55, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[51] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Comparison of rbf network learning and reinforcement learning on the maze exploration problem. In Véra Kůrková, Roman Neruda, and Jan Koutník, editors, Artificial Neural Networks - ICANN 2008, pages 720--729, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[52] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Rule-based analysis of behaviour learned by evolutionary and reinforcement algorithms. In De-Shuang Huang, Donald C. Wunsch, Daniel S. Levine, and Kang-Hyun Jo, editors, Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, pages 284--291, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[53] Olivier Michel, Fabien Rohrer, and Yvan Bourquin. Rat's Life: A Cognitive Robotics Benchmark, pages 223--232. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. [ bib | DOI | http ]
[54] Takaaki Shimone, Daisuke Kurabayashi, Kunio Okita, and Tetsuro Funato. Implementation of Formation Transition System Using Synchronization in a Mobile Robot Group, pages 423--432. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. [ bib | DOI | http ]
[55] Winai Chonnaparamutt and Emilia I. Barakova. Robot simulation of sensory integration dysfunction in autism with dynamic neural fields model. In Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing -- ICAISC 2008, pages 741--751, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[56] Dieter Vanderelst and Emilia Barakova. Autonomous parsing of behavior in a multi-agent setting. In Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing -- ICAISC 2008, pages 1198--1209, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[57] Jim Pugh and Alcherio Martinoli. Distributed adaptation in multi-robot search using particle swarm optimization. In Minoru Asada, John C. T. Hallam, Jean-Arcady Meyer, and Jun Tani, editors, From Animals to Animats 10, pages 393--402, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[58] Louis-Emmanuel Martinet, Benjamin Fouque, Jean-Baptiste Passot, Jean-Arcady Meyer, and Angelo Arleo. Modelling the cortical columnar organisation for topological state-space representation, and action planning. In Minoru Asada, John C. T. Hallam, Jean-Arcady Meyer, and Jun Tani, editors, From Animals to Animats 10, pages 137--147, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[59] Frederick Ducatelle, Alexander Förster, Gianni A. Di Caro, and Luca M. Gambardella. Supporting navigation in multi-robot systems through delay tolerant network communication. IFAC Proceedings Volumes, 42(22):25--30, 2009. 1st IFAC Workshop on Networked Robotics. [ bib | DOI | http ]
[60] Leandro Soriano Marcolino and Luiz Chaimowicz. Traffic control for a swarm of robots: Avoiding target congestion. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1955--1961, 2009. [ bib | DOI ]
[61] Alvaro Gutierrez, Alexandre Campo, Marco Dorigo, Jesus Donate, Felix Monasterio-Huelin, and Luis Magdalena. Open e-puck range amp; bearing miniaturized board for local communication in swarm robotics. In 2009 IEEE International Conference on Robotics and Automation, pages 3111--3116, 2009. [ bib | DOI ]
[62] Emilia I. Barakova and Winai Chonnaparamutt. Timing sensory integration. IEEE Robotics Automation Magazine, 16(3):51--58, 2009. [ bib | DOI ]
[63] Á. Gutiérrez, E. Tuci, and A. Campo. Evolution of Neuro-Controllers for Robots' Alignment using Local Communication. International Journal of Advanced Robotic Systems, 6(1), 2009. [ bib ]
[64] François Rey, Michele Leidi, Francesco Mondada, Hajime Asama, Haruhisa Kurokawa, Jun Ota, and Kosuke Sekiyama. Interactive mobile robotic drinking glasses. Distributed Autonomous Robotic Systems 8, 01 2009. [ bib | DOI ]
[65] Stanislav Slušn, Roman Neruda, and Vidnerova Petra. Learning algorithms for small mobile robots: Case study on maze exploration. CEUR Workshop Proceedings, 414, 08 2009. [ bib ]
[66] T. Otani and M. Koshino. Applying a path planner based on RRT to cooperative multirobot box-pushing. Artificial Life and Robotics, 13(2):418--422, 2009. [ bib ]
[67] Agostino Martinelli. Using the Distribution Theory to Simultaneously Calibrate the Sensors of a Mobile Robot. In RSS, page 000, Seattle, United States, June 2009. [ bib | http | .pdf ]
[68] Christian Balkenius, Jan Morén, Birger Johansson, and Magnus Johnsson. Ikaros: Building cognitive models for robots. Advanced Engineering Informatics, 24(1):40--48, 2010. Informatics for cognitive robots. [ bib | DOI | http ]
[69] Leonardo Marín, Marina Vallés, Ángel Valera, and Pedro Albertos. Implementation of a bug algorithm in the e-puck from a hybrid control viewpoint. In 2010 15th International Conference on Methods and Models in Automation and Robotics, pages 174--179, 2010. [ bib | DOI ]
[70] Amanda Whitbrook, Uwe Aickelin, and Jonathan Garibaldi. Real-world transfer of evolved artificial immune system behaviours between small and large scale robotic platforms. Evolutionary Intelligence, 3:123--136, 06 2010. [ bib | DOI ]
[71] Verena Fischer and Simon Hickinbotham. A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck, pages 1--12. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. [ bib | DOI | http ]
[72] Dario Floreano, Sara Mitri, and Julien Hubert. E-puck, pages 303--306. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. [ bib | DOI | http ]
[73] Luc Guyot and Fabien Rohrer. Teaching robotics with an open curriculum based on the e-puck robot , simulations and competitions. 2011. [ bib ]
[74] Wenguo Liu and Alan F.T. Winfield. Open-hardware e-puck linux extension board for experimental swarm robotics research. Microprocessors and Microsystems, 35(1):60--67, 2011. [ bib | DOI | http ]
[75] Verena Fischer and Simon Hickinbotham. Evolving a metabolic subsumption architecture for cooperative control of the e-puck. Memetic Computing, 3(4):231--244, Dec 2011. [ bib | DOI | http ]
[76] Yu. N. Zolotukhin, K. Yu. Kotov, A. S. Maltsev, A. A. Nesterov, M. N. Filippov, and A. P. Yan. Correction of transportation lag in the mobile robot control system. Optoelectronics, Instrumentation and Data Processing, 47(2):141--150, Apr 2011. [ bib | DOI | http ]
[77] Alan Winfield and Mehmet Erbas. On embodied memetic evolution and the emergence of behavioural traditions in robots. Memetic Computing, 3:261--270, 12 2011. [ bib | DOI ]
[78] Fernando Montes-Gonzalez and Fernando Aldana-Franco. The evolution of signal communication for the e-puck robot. In Ildar Batyrshin and Grigori Sidorov, editors, Advances in Artificial Intelligence, pages 466--477, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. [ bib ]
[79] Yaniss Touahmi, Nikolay Burlutskiy, Kongwoo Lee, and Beomhee Lee. Congestion avoidance for multiple micro-robots using the behaviour of fish schools. International Journal of Advanced Robotic Systems, 9(3):67, 2012. [ bib | DOI | arXiv | www: ]
[80] F. Rohrer and O. Michel. Improving support for e-puck robot in webots mobile robots simulation software. 2012. [ bib ]
[81] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Roland Y. Siegwart, and Paul A. Beardsley. Image and animation display with multiple mobile robots. The International Journal of Robotics Research, 31:753 -- 773, 2012. [ bib ]
[82] Jianhua Yang, Yabo Liu, Z. Wu, and Min Yao. The evolution of cooperative behaviours in physically heterogeneous multi-robot systems. International Journal of Advanced Robotic Systems, 9:1, 12 2012. [ bib | DOI ]
[83] Jianing Chen, Melvin Gauci, Michael J. Price, and Roderich Groß. Segregation in swarms of e-puck robots based on the brazil nut effect. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS '12, page 163–170, Richland, SC, 2012. International Foundation for Autonomous Agents and Multiagent Systems. [ bib ]
[84] Lachlan Murray, Jon Timmis, and Andy Tyrrell. Self-reconfigurable modular e-pucks. In Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen, Andries P. Engelbrecht, Roderich Groß, and Thomas Stützle, editors, Swarm Intelligence, pages 133--144, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. [ bib ]
[85] Liangbing Feng, Masanao Obayashi, Takashi Kuremoto, and Kunikazu Kobayashi. Optimization and verification for a robot control system based on learning petri net model. In Dehuai Yang, editor, Informatics in Control, Automation and Robotics, pages 815--823, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. [ bib ]
[86] Khoukhi Amar and Shahab Mohamed. Stabilized feedback control of unicycle mobile robots. International Journal of Advanced Robotic Systems, 10(4):187, 2013. [ bib | DOI | arXiv | www: ]
[87] Lachlan Murray, Jon Timmis, and Andy Tyrrell. Modular self-assembling and self-reconfiguring e-pucks. Swarm Intelligence, 7(2):83--113, Sep 2013. [ bib | DOI | http ]
[88] Mehmet S. Guzel, John Erwin, and Wan Nurshazwani Wan Zakaria. Vision based object recognition of e-puck mobile robot for warehouse application. International Journal of Integrated Engineering, 6(3), 1 2014. [ bib | http ]
[89] Melvin Gauci, Jianing Chen, Wei Li, Tony J. Dodd, and Roderich Groß. Self-organized aggregation without computation. The International Journal of Robotics Research, 33(8):1145--1161, 2014. [ bib | DOI | arXiv | www: ]
[90] Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo, and Gianni A. Di Caro. zeppelin: Distributed path planning using an overhead camera network. International Journal of Advanced Robotic Systems, 11(8):119, 2014. [ bib | DOI | arXiv | www: ]
[91] Micael S. Couceiro, Patricia A. Vargas, and Rui P. Rocha. Bridging the reality gap between the webots simulator and e-puck robots. Robotics and Autonomous Systems, 62(10):1549--1567, 2014. [ bib | DOI | http ]
[92] Guillaume Sartoretti, Max-Olivier Hongler, Marcelo Elias de Oliveira, and Francesco Mondada. Decentralized self-selection of swarm trajectories: from dynamical systems theory to robotic implementation. Swarm Intelligence, 8(4):329--351, Dec 2014. [ bib | DOI | http ]
[93] Information Association, Daniel Alves, Eduardo Elael, Guilherme Strachan, Guilherme Carvalho, Marco Xaud, Marcos Couto, Rafael Mendonça, Renan Freitas, Thiago Santos, Vanessa Gonçalves, Luiza Mourelle, Nadia Nedjah, Nelson Maculan, Priscila Lima, and Felipe França. A Swarm Robotics Approach to Decontamination, pages 955--969. 01 2014. [ bib | DOI ]
[94] Francois Francezon. Towards "skynet" via heterogeneous manets. 08 2014. [ bib | DOI ]
[95] Alan F. T. Winfield, Christian Blum, and Wenguo Liu. Towards an ethical robot: Internal models, consequences and ethical action selection. In Michael Mistry, Aleš Leonardis, Mark Witkowski, and Chris Melhuish, editors, Advances in Autonomous Robotics Systems, pages 85--96, Cham, 2014. Springer International Publishing. [ bib ]
[96] Yuri K. Lopes, André B. Leal, Tony J. Dodd, and Roderich Groß. Application of supervisory control theory to swarms of e-puck and kilobot robots. In Marco Dorigo, Mauro Birattari, Simon Garnier, Heiko Hamann, Marco Montes de Oca, Christine Solnon, and Thomas Stützle, editors, Swarm Intelligence, pages 62--73, Cham, 2014. Springer International Publishing. [ bib ]
[97] Pablo Tarquino and Kevin Nickels. Programming an E-Puck Robot to Create Maps of Virtual and Physical Environments, pages 13--28. Springer International Publishing, Cham, 2014. [ bib | DOI | http ]
[98] Arne Brutschy, Lorenzo Garattoni, Manuele Brambilla, Gianpiero Francesca, Giovanni Pini, Marco Dorigo, and Mauro Birattari. The tam: abstracting complex tasks in swarm robotics research. Swarm Intelligence, 9(1):1--22, Mar 2015. [ bib | DOI | http ]
[99] Ali Abdul Khaliq and Alessandro Saffiotti. Stigmergy at work: Planning and navigation for a service robot on an rfid floor. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1085--1092, 2015. [ bib | DOI ]
[100] Jianing Chen, Melvin Gauci, Wei Li, Andreas Kolling, and Roderich Groß. Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Transactions on Robotics, 31(2):307--321, 2015. [ bib | DOI ]
[101] Andreagiovanni Reina, Mattia Salvaro, Gianpiero Francesca, Lorenzo Garattoni, Carlo Pinciroli, Marco Dorigo, and Mauro Birattari. Augmented reality for robots: Virtual sensing technology applied to a swarm of e-pucks. In 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 1--6, 2015. [ bib | DOI ]
[102] Wei Li, Melvin Gauci, and Roderich Groß. Turing learning: a metric-free approach to inferring behavior and its application to swarms. Swarm Intelligence, 10(3):211--243, Sep 2016. [ bib | DOI | http ]
[103] Yuri K. Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd, and Roderich Groß. Supervisory control theory applied to swarm robotics. Swarm Intelligence, 10(1):65--97, Mar 2016. [ bib | DOI | http ]
[104] =., G., A., and C. Software infrastructure for e-puck ( and tam ). 2016. [ bib ]
[105] Rusalky del Angel Ortiz, Carlos M. Contreras, Ana G. Gutiérrez-Garcia, and Montes Fernando M. González. Social interaction test between a rat and a robot: A pilot study. International Journal of Advanced Robotic Systems, 13(1):4, 2016. [ bib | DOI | arXiv | www: ]
[106] Marwah M. Almasri, Khaled M. Elleithy, and Abrar M. Alajlan. Development of efficient obstacle avoidance and line following mobile robot with the integration of fuzzy logic system in static and dynamic environments. In 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pages 1--6, 2016. [ bib | DOI ]
[107] Stefan M. Trenkwalder, Yuri Kaszubowski Lopes, Andreas Kolling, Anders Lyhne Christensen, Radu Prodan, and Roderich Groß. Openswarm: An event-driven embedded operating system for miniature robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4483--4490, 2016. [ bib | DOI ]
[108] G.A. Vargas, O.G. Rubiano, Ricardo Castillo Estepa, Oscar Avilés Sánchez, and Mauricio Mauledoux. Simulation of e-puck path planning in webots. International Journal of Applied Engineering Research, 11:9772--9775, 01 2016. [ bib ]
[109] Saleem Sumbal and Marc Carreras. Environment detection and path planning using the e-puck robot. International research journal of engineering and technology, 3, 01 2016. [ bib | DOI ]
[110] Eduardo Castello, Tomoyuki Yamamoto, Fabio Dalla Libera, Wenguo Liu, Alan F. T. Winfield, Yutaka Nakamura, and Hiroshi Ishiguro. Adaptive foraging for simulated and real robotic swarms: the dynamical response threshold approach. Swarm Intelligence, 10(1):1--31, Mar 2016. [ bib | DOI | http ]
[111] Dušan Nemec, Aleš Janota, Marián Hruboš, Michal Gregor, and Rastislav Pirník. Mutual acoustic identification in the swarm of e-puck robots. International Journal of Advanced Robotic Systems, 14(3):1729881417710794, 2017. [ bib | DOI | arXiv | www: ]
[112] Muhammad Habib Mahmood. and Pere Ridao Rodriguez. Localization and mapping of cheap educational robot with low bandwidth noisy ir sensors. In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - ICPRAM,, pages 583--590. INSTICC, SciTePress, 2017. [ bib | DOI ]
[113] Alan G. Millard, Russell Joyce, James A. Hilder, Cristian Fleşeriu, Leonard Newbrook, Wei Li, Liam J. McDaid, and David M. Halliday. The pi-puck extension board: A raspberry pi interface for the e-puck robot platform. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 741--748, 2017. [ bib | DOI ]
[114] Muhanad H. Mohammed Alkilabi, Aparajit Narayan, and Elio Tuci. Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies. Swarm Intelligence, 11(3):185--209, Dec 2017. [ bib | DOI | http ]
[115] Leandro Soriano Marcolino, Yuri Tavares dos Passos, Álvaro Antônio Fonseca de Souza, Andersoney dos Santos Rodrigues, and Luiz Chaimowicz. Avoiding target congestion on the navigation of robotic swarms. Autonomous Robots, 41(6):1297--1320, Aug 2017. [ bib | DOI | http ]
[116] Fernando Perez-Diaz, Ruediger Zillmer, and Roderich Groß. Control of synchronization regimes in networks of mobile interacting agents. Phys. Rev. Applied, 7:054002, May 2017. [ bib | DOI | http ]
[117] Shu Wan Goh. Swarm algorithm target seeking in unknown environment. 2018. [ bib ]
[118] Anıl Özdemir, Melvin Gauci, Salomé Bonnet, and Roderich Groß. Finding consensus without computation. IEEE Robotics and Automation Letters, 3(3):1346--1353, 2018. [ bib | DOI ]
[119] Gina M.B. de Oliveira, Reslley G.O. Silva, Laurence R. do Amaral, and Luiz G.A. Martins. An evolutionary-cooperative model based on cellular automata and genetic algorithms for the navigation of robots under formation control. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pages 426--431, 2018. [ bib | DOI ]
[120] Wuyi Luo, Lang Tan, Qinghai Gong, and Jiarun Liu. Implementation of pursuit-evasion differential games using simple fuzzy system based on e-puck robot system*. In 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), pages 1--6, 2018. [ bib | DOI ]
[121] Ali Noormohammadi-Asl, Mohsen Saffari, and Mohammad Teshnehlab. Neural control of mobile robot motion based on feedback error learning and mimetic structure. In Electrical Engineering (ICEE), Iranian Conference on, pages 778--783, 2018. [ bib | DOI ]
[122] Eleni Vrochidou, Michail Manios, George A. Papakostas, Charalabos N. Aitsidis, and Fotis Panagiotopoulos. Open-source robotics: Investigation on existing platforms and their application in education. In 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1--6, 2018. [ bib | DOI ]
[123] Lenka Pitonakova, Alan Winfield, and Richard Crowder. Recruitment near worksites facilitates robustness of foraging e-puck swarms to global positioning noise. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4276--4281, 2018. [ bib | DOI ]
[124] Chi-Chung Chen and Handdeut Chang. Design of robots formation controllers using evolutionary fuzzy systems. 2018. [ bib ]
[125] Alan G. Millard, Richard Redpath, Alistair M. Jewers, Charlotte Arndt, Russell Joyce, James A. Hilder, Liam J. McDaid, and David M. Halliday. Ardebug: An augmented reality tool for analysing and debugging swarm robotic systems. Frontiers in Robotics and AI, 5:87, 2018. [ bib | DOI | http ]
[126] Elio Tuci, Muhanad H. M. Alkilabi, and Otar Akanyeti. Cooperative object transport in multi-robot systems: A review of the state-of-the-art. Frontiers in Robotics and AI, 5:59, 2018. [ bib | DOI | http ]
[127] Daniel Strömbom and Andrew J. King. Robot collection and transport of objects: A biomimetic process. Frontiers in Robotics and AI, 5:48, 2018. [ bib | DOI | http ]
[128] Simon Jones, Matthew Studley, Sabine Hauert, and Alan Frank Thomas Winfield. A two teraflop swarm. Frontiers in Robotics and AI, 5:11, 2018. [ bib | DOI | http ]
[129] Qiaoyu Li, Xiaolong Yang, Yuying Zhu, and Jianlei Zhang. Self-organized task allocation in a swarm of e-puck robots. In Zhidong Deng, editor, Proceedings of 2017 Chinese Intelligent Automation Conference, pages 153--160, Singapore, 2018. Springer Singapore. [ bib ]
[130] Luiz G. A. Martins, Rafael da P. Cândido, Mauricio C. Escarpinati, Patricia A. Vargas, and Gina M. B. de Oliveira. An improved robot path planning model using cellular automata. In Manuel Giuliani, Tareq Assaf, and Maria Elena Giannaccini, editors, Towards Autonomous Robotic Systems, pages 183--194, Cham, 2018. Springer International Publishing. [ bib ]
[131] Muhanad H. Mohammed Alkilabi, Aparajit Narayan, Chuan Lu, and Elio Tuci. Evolving Group Transport Strategies for e-Puck Robots: Moving Objects Towards a Target Area, pages 503--516. Springer International Publishing, Cham, 2018. [ bib | DOI | http ]
[132] Ken Hasselmann, Frédéric Robert, and Mauro Birattari. Automatic design of communication-based behaviors for robot swarms. In Marco Dorigo, Mauro Birattari, Christian Blum, Anders L. Christensen, Andreagiovanni Reina, and Vito Trianni, editors, Swarm Intelligence, pages 16--29, Cham, 2018. Springer International Publishing. [ bib ]
[133] Claudiney R. Tinoco, Danielli A. Lima, and Gina M. B. Oliveira. An improved model for swarm robotics in surveillance based on cellular automata and repulsive pheromone with discrete diffusion. International Journal of Parallel, Emergent and Distributed Systems, 34(1):53--77, 2019. [ bib | DOI | arXiv | www: ]
[134] Dušan Nemec, Michal Gregor, Emília Bubeníková, Marián Hruboš, and Rastislav Pirník. Improving the hybrid a* method for a non-holonomic wheeled robot. International Journal of Advanced Robotic Systems, 16(1):1729881419826857, 2019. [ bib | DOI | arXiv | www: ]
[135] Gina M. B. Oliveira, Reslley G. O. Silva, Giordano B. S. Ferreira, Micael S. Couceiro, Laurence R. do Amaral, Patricia A. Vargas, and Luiz Gustavo A. Martins. A cellular automata-based path-planning for a cooperative and decentralized team of robots. In 2019 IEEE Congress on Evolutionary Computation (CEC), pages 739--746, 2019. [ bib | DOI ]
[136] Alexandru-Calin Stan and Mihaela Oprea. A case study of multi-robot systems coordination using pso simulated in webots. In 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages 1--5, 2019. [ bib | DOI ]
[137] Anıl Özdemir, Melvin Gauci, Andreas Kolling, Matthew D. Hall, and Roderich Groß. Spatial coverage without computation. In 2019 International Conference on Robotics and Automation (ICRA), pages 9674--9680, 2019. [ bib | DOI ]
[138] Rodrigo Chaves, Paulo Rezeck, and Luiz Chaimowicz. Swarmap: Occupancy grid mapping with a robotic swarm. In 2019 19th International Conference on Advanced Robotics (ICAR), pages 727--732, 2019. [ bib | DOI ]
[139] Chunyan Wang, Hilton Tnunay, Zongyu Zuo, Barry Lennox, and Zhengtao Ding. Fixed-time formation control of multirobot systems: Design and experiments. IEEE Transactions on Industrial Electronics, 66(8):6292--6301, 2019. [ bib | DOI ]
[140] Natalia Basimova and Pavel Chebotarev. Clustering as a means of leader selection in consensus networks, 2019. [ bib | arXiv ]
[141] Siobhan Duncan. Taking stigmergy out of the lab and into the field: Student research abstract. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC '19, page 961–964, New York, NY, USA, 2019. Association for Computing Machinery. [ bib | DOI | http ]
[142] Kongtao Zhu, Chensheng Cheng, Can Wang, and Feihu Zhang. Wall-following control of multi-robot based on moving target tracking and obstacle avoidance. In Fuchun Sun, Huaping Liu, and Dewen Hu, editors, Cognitive Systems and Signal Processing, pages 534--541, Singapore, 2019. Springer Singapore. [ bib ]
[143] Yuvraj Sahni, Jiannong Cao, and Shan Jiang. Middleware for Multi-robot Systems, pages 633--673. Springer International Publishing, Cham, 2019. [ bib | DOI | http ]
[144] Daisuke Inoue, Daisuke Murai, and Hiroaki Yoshida. Stochastic self-organizing control for swarm robot systems. In Ying Tan, Yuhui Shi, and Ben Niu, editors, Advances in Swarm Intelligence, pages 405--416, Cham, 2019. Springer International Publishing. [ bib ]
[145] Miquel Kegeleirs, David Garzón Ramos, and Mauro Birattari. Random walk exploration for swarm mapping. In Kaspar Althoefer, Jelizaveta Konstantinova, and Ketao Zhang, editors, Towards Autonomous Robotic Systems, pages 211--222, Cham, 2019. Springer International Publishing. [ bib ]
[146] Adrian Rubio-Solis and Uriel Martinez-Hernandez. Hierarchical behaviour for object shape recognition using a swarm of robots. In Uriel Martinez-Hernandez, Vasiliki Vouloutsi, Anna Mura, Michael Mangan, Minoru Asada, Tony J. Prescott, and Paul F.M.J. Verschure, editors, Biomimetic and Biohybrid Systems, pages 355--359, Cham, 2019. Springer International Publishing. [ bib ]
[147] S. M. Sombolestan, A. Rasooli, and S. Khodaygan. Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning. Journal of Ambient Intelligence and Humanized Computing, 10(5):1841--1850, May 2019. [ bib | DOI | http ]
[148] Stefan M. Trenkwalder, Iñaki Esnaola, Yuri Kaszubowski Lopes, Andreas Kolling, and Roderich Groß. Swarmcom: an infra-red-based mobile ad-hoc network for severely constrained robots. Autonomous Robots, 44(1):93--114, Jan 2020. [ bib | DOI | http ]
[149] Christian Balkenius, Birger Johansson, and Trond A Tjøstheim. Ikaros: A framework for controlling robots with system-level brain models. International Journal of Advanced Robotic Systems, 17(3):1729881420925002, 2020. [ bib | DOI | arXiv | www: ]
[150] Israel C.S. Rocha, Carlos H.C. Ribeiro, and Cinara Ghedini. Effectiveness of embedded topology controllers in a multi-robot network. IFAC-PapersOnLine, 53(2):9740--9745, 2020. 21st IFAC World Congress. [ bib | DOI | http ]
[151] Ken Hasselmann and M. Birattari. Modular automatic design of collective behaviors for robots endowed with local communication capabilities. PeerJ Computer Science, 6, 2020. [ bib ]
[152] Nafee Mourad, Ali Ezzeddine, Babak Nadjar Araabi, and Majid Nili Ahmadabadi. Learning from demonstrations and human evaluative feedbacks: Handling sparsity and imperfection using inverse reinforcement learning approach. Journal of Robotics, 2020:3849309, Jan 2020. [ bib | DOI | http ]
[153] Weijia Yao, Héctor Garcia de Marina, and Ming Cao. Vector field guided path following control: Singularity elimination and global convergence. In 2020 59th IEEE Conference on Decision and Control (CDC), pages 1543--1549, 2020. [ bib | DOI ]
[154] Yating Zheng and Zhangang Han. Experimental implementation of collective motion based on swarm robotic control. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 1526--1531, 2020. [ bib | DOI ]
[155] Yuri Kaszubowski Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd, and Roderich Groß. Supervisory control of robot swarms using public events. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 7193--7199, 2020. [ bib | DOI ]
[156] Hamilton J. M. Lopes and Danielli A. Lima. Cellular automata in path planning navigation control applied in surveillance task using the e-puck architecture. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 1117--1122, 2020. [ bib | DOI ]
[157] Topan Try Harmanda, Karlisa Priandana, and Medria K.D Hardhienata. Development of localization technique using trilateration algorithm for e-puck2 robot. In 2020 International Conference on Smart Technology and Applications (ICoSTA), pages 1--6, 2020. [ bib | DOI ]
[158] Samuel C. S. Nametala, Luiz G. A. Martins, and Gina M. B. Oliveira. A new distance diffusion algorithm for a path-planning model based on cellular automata. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages 1--8, 2020. [ bib | DOI ]
[159] Valeria Villani, Beatrice Capelli, Cristian Secchi, Cesare Fantuzzi, and Lorenzo Sabattini. Humans interacting with multi-robot systems: a natural affect-based approach. Autonomous Robots, 44(3):601--616, Mar 2020. [ bib | DOI | http ]
[160] Mehmet Dinçer Erbaş and İsmail Hakkı Parlak. Evaluation of vocal communication in a robot collective. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8:2029 -- 2040, 2020. [ bib | DOI ]
[161] Alan Millard, Russell Joyce, and Ian Gray. Human-swarm interaction via e-ink displays. 05 2020. [ bib ]
[162] Andrei Florea and Cătălin Buiu. An Overview of Swarm Robotics, pages 58--69. 01 2020. [ bib | DOI ]
[163] David Garzón Ramos and Mauro Birattari. Automatic design of collective behaviors for robots that can display and perceive colors. Applied Sciences, 10(13), 2020. [ bib | DOI | http ]
[164] Muhammad Salman, David Garzón Ramos, Ken Hasselmann, and Mauro Birattari. Phormica: Photochromic pheromone release and detection system for stigmergic coordination in robot swarms. Frontiers in Robotics and AI, 7:195, 2020. [ bib | DOI | http ]
[165] Volker Strobel, Eduardo Castelló Ferrer, and Marco Dorigo. Blockchain technology secures robot swarms: A comparison of consensus protocols and their resilience to byzantine robots. Frontiers in Robotics and AI, 7:54, 2020. [ bib | DOI | http ]
[166] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm robotic behaviors and current applications. Frontiers in Robotics and AI, 7:36, 2020. [ bib | DOI | http ]
[167] Jacob M. Allen, Russell Joyce, Alan G. Millard, and Ian Gray. The pi-puck ecosystem: Hardware and software support for the e-puck and e-puck2. In Marco Dorigo, Thomas Stützle, Maria J. Blesa, Christian Blum, Heiko Hamann, Mary Katherine Heinrich, and Volker Strobel, editors, Swarm Intelligence, pages 243--255, Cham, 2020. Springer International Publishing. [ bib ]
[168] Alexandre Pacheco, Volker Strobel, and Marco Dorigo. A blockchain-controlled physical robot swarm communicating via an ad-hoc network. In Marco Dorigo, Thomas Stützle, Maria J. Blesa, Christian Blum, Heiko Hamann, Mary Katherine Heinrich, and Volker Strobel, editors, Swarm Intelligence, pages 3--15, Cham, 2020. Springer International Publishing. [ bib ]
[169] M. Kirtas, K. Tsampazis, N. Passalis, and A. Tefas. Deepbots: A webots-based deep reinforcement learning framework for robotics. In Ilias Maglogiannis, Lazaros Iliadis, and Elias Pimenidis, editors, Artificial Intelligence Applications and Innovations, pages 64--75, Cham, 2020. Springer International Publishing. [ bib ]
[170] Hamilton J.M. Lopes and Danielli A. Lima. Evolutionary tabu inverted ant cellular automata with elitist inertia for swarm robotics as surrogate method in surveillance task using e-puck architecture. Robotics and Autonomous Systems, 144:103840, 2021. [ bib | DOI | http ]
[171] Adriano M.C. Rezende, Vinicius M. Gonçalves, and Luciano C.A. Pimenta. Safe coordination of robots in cyclic paths. ISA Transactions, 109:126--140, 2021. [ bib | DOI | http ]
[172] Neuro-evolutionary robotics: A gap between simulation and reality. 2021. [ bib ]
[173] Chanelle Lee, Jonathan Lawry, and Alan F. T. Winfield. Negative updating applied to the best-of-n problem with noisy qualities. Swarm Intelligence, 15(1):111--143, Jun 2021. [ bib | DOI | http ]
[174] Topan Try Harmanda, Medria K. D Hardhienata, and Karlisa Priandana. Development of multi-robot systems using particle swarm optimization algorithm for task allocation. In 2021 IEEE Region 10 Symposium (TENSYMP), pages 1--8, 2021. [ bib | DOI ]
[175] Pranav Kedia and Madhav Rao. Gengrid: A generalised distributed experimental environmental grid for swarm robotics. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1910--1917, 2021. [ bib | DOI ]
[176] Yahya Muhammad Adam, Nohaidda Binti Sariff, and Nasir A. Algeelani. E-puck mobile robot obstacles avoidance controller using the fuzzy logic approach. In 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), pages 107--112, 2021. [ bib | DOI ]
[177] Tohid Kargar Tasooji and Horacio J. Marquez. Cooperative localization in mobile robots using event-triggered mechanism: Theory and experiments. IEEE Transactions on Automation Science and Engineering, pages 1--13, 2021. [ bib | DOI ]
[178] Ken Hasselmann, Antoine Ligot, Julian Ruddick, and Mauro Birattari. Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms. Nature Communications, 12(1):4345, Jul 2021. [ bib | DOI | http ]
[179] Qihao Shan and Sanaz Mostaghim. Discrete collective estimation in swarm robotics with distributed bayesian belief sharing. Swarm Intelligence, Sep 2021. [ bib | DOI | http ]
[180] Eduardo Castelló Ferrer, Thomas Hardjono, Alex Pentland, and Marco Dorigo. Secure and secret cooperation in robot swarms. Science Robotics, 6(56):eabf1538, 2021. [ bib | DOI | arXiv | http ]
[181] Miquel Kegeleirs, Giorgio Grisetti, and Mauro Birattari. Swarm slam: Challenges and perspectives. Frontiers in Robotics and AI, 8:23, 2021. [ bib | DOI | http ]

This file was generated by bibtex2html 1.98.

[1] Yating Zheng, Cristián Huepe, and Zhangang Han. Experimental capabilities and limitations of a position-based control algorithm for swarm robotics. Adaptive Behavior, 0(0):1059712320930418, 0. [ bib | DOI | arXiv | www: ]
[2] Mattias Jacobsson, Ylva Fernaeus, and Lars Erik Holmquist. Glowbots: designing and implementing engaging human-robot interaction, 2008-06. [ bib ]
[3] S. Ljungblad, K. Walter, M. Jacobsson, and L.E. Holmquist. Designing personal embodied agents with personas. In ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication, pages 575--580, 2006. [ bib | DOI ]
[4] Nikolaus Correll, Christopher M. Cianci, Xavier Raemy, and Alcherio Martinoli. Self-organized embedded sensor/actuator networks for ""smart"" turbines. 2006. [ bib ]
[5] A. Acerbi, F. Cecconi, D. Marocco, and S. Zappacosta. Individual vs Social Learning in a Population of Autonomous Robots. In Proceedings of the ECAL, pages 10--14, 2007. [ bib ]
[6] Yong Xu, Matthieu Guillemot, and Toyoaki Nishida. An experiment study of gesture-based human-robot interface. In 2007 IEEE/ICME International Conference on Complex Medical Engineering, pages 457--463, 2007. [ bib | DOI ]
[7] Jim Pugh and Alcherio Martinoli. The cost of reality: Effects of real-world factors on multi-robot search. In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 397--404, 2007. [ bib | DOI ]
[8] Saeed Amizadeh, Majid Nili Ahmadabadi, Babak N. Araabi, and Roland Siegwart. A bayesian approach to conceptualization using reinforcement learning. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics, pages 1--7, 2007. [ bib | DOI ]
[9] Pierre Roduit, Alcherio Martinoli, and Jacques Jacot. A quantitative method for comparing trajectories of mobile robots using point distribution models. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2441--2448, 2007. [ bib | DOI ]
[10] Jim Pugh and Alcherio Martinoli. Inspiring and modeling multi-robot search with particle swarm optimization. In 2007 IEEE Swarm Intelligence Symposium, pages 332--339, 2007. [ bib | DOI ]
[11] Jim Pugh and Alcherio Martinoli. Parallel learning in heterogeneous multi-robot swarms. In 2007 IEEE Congress on Evolutionary Computation, pages 3839--3846, 2007. [ bib | DOI ]
[12] Farzad Rastegar and Majid Nili Ahmadabadi. Grounding abstraction in sensory experience. In 2007 IEEE/ASME international conference on advanced intelligent mechatronics, pages 1--8, 2007. [ bib | DOI ]
[13] O. Gigliotta and S. Nolfi. Formation of spatial representations in evolving autonomous robots. In IEEE Symposium on Artificial Life, 2007. ALIFE'07, pages 171--178, 2007. [ bib ]
[14] Giovanni Pini, Elio Tuci, and Marco Dorigo. Evolution of social and individual learning in autonomous robots. In IN: ECAL WORKSHOP: SOCIAL LEARNING IN EMBODIED AGENTS, 2007. [ bib ]
[15] Herianto Herianto, Toshiki Sakakibara, and Daisuke Kurabayashi. Artificial pheromone system using rfid for navigation of autonomous robots. Journal of Bionic Engineering - J BIONIC ENG, 4:245--253, 12 2007. [ bib | DOI ]
[16] Mattias Jacobsson, Sara Ljungblad, Johan Bodin, Jeffrey Knurek, and Lars Holmquist. Glowbots: Robots that evolve relationships. 01 2007. [ bib | DOI ]
[17] Davide Marocco and Alberto Acerbi. Adaptation and social facilitation in a population of autonomous robots. In Proceedings of the Seventh International Conference on Epigenetic Robotics, pages 85--91, Lund, 2007. LUCS. [ bib ]
[18] Christopher M. Cianci, Thomas Lochmatter, Jim Pugh, and Alcherio Martinoli. Toward multi-level modeling of robotic sensor networks: A case study in acoustic event monitoring. In Proceedings of the 1st International Conference on Robot Communication and Coordination, RoboComm '07. IEEE Press, 2007. [ bib ]
[19] Sara Ljungblad and Lars Erik Holmquist. Transfer scenarios: Grounding innovation with marginal practices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '07, page 737–746, New York, NY, USA, 2007. Association for Computing Machinery. [ bib | DOI | http ]
[20] Alberto Acerbi, Davide Marocco, and Stefano Nolfi. Social facilitation on the development of foraging behaviors in a population of autonomous robots. In Fernando Almeida e Costa, Luis Mateus Rocha, Ernesto Costa, Inman Harvey, and António Coutinho, editors, Advances in Artificial Life, pages 625--634, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. [ bib ]
[21] Christopher M. Cianci, Xavier Raemy, Jim Pugh, and Alcherio Martinoli. Communication in a swarm of miniature robots: The e-puck as an educational tool for swarm robotics. In Erol Sahin, William M. Spears, and Alan F. T. Winfield, editors, Swarm Robotics, pages 103--115, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. [ bib ]
[22] T. Gonos and B. Webb. Using homeostatic neurons for sensor self-calibration, 2008. [ bib ]
[23] H. Fukuda and K. Ueda. The Difference in the Manner of Interacting with a Moving Robot Influences Animacy Perception. In Proceedings of the 30th Annual Conference of the Cognitive Science Society, pages 2480--2484, 2008. [ bib ]
[24] Giovanni Pini and Elio Tuci. On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach. Connection Science, 20(2-3):211--230, 2008. [ bib | DOI | arXiv | www: ]
[25] Alvaro Gutiérrez, Alexandre Campo, Marco Dorigo, Daniel Amor, Luis Magdalena, and Félix Monasterio-Huelin. An open localization and local communication embodied sensor. Sensors, 8(11):7545--7563, 2008. [ bib | DOI | http ]
[26] E.A. Antonelo, B. Schrauwen, and D. Stroobandt. Event detection and localization for small mobile robots using reservoir computing. Neural Networks, 21(6):862--871, 2008. Computational and Biological Inspired Neural Networks, selected papers from ICANN 2007. [ bib | DOI | http ]
[27] Birger Johansson and Christian Balkenius. Learning to anticipate the movements of intermittently occluded objects. In Christian Balkenius, editor, Proceedings of the Eighth International Conference on Epigenetic Robotics, volume 139, pages 54--60. Lund University Cognitive Studies, 2008. Epigenetic Robotics ; Conference date: 30-07-2008. [ bib ]
[28] Konstantinos Ioannidis, Georgios Ch. Sirakoulis, and Ioannis Andreadis. A cellular automaton collision-free path planner suitable for cooperative robots. In 2008 Panhellenic Conference on Informatics, pages 256--260, 2008. [ bib | DOI ]
[29] Peter Dürr, Claudio Mattiussi, Andrea Soltoggio, and Dario Floreano. Evolvability of neuromodulated learning for robots. In 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems (LAB-RS), pages 41--46, 2008. [ bib | DOI ]
[30] Michael Siebold and James Hereford. Easily scalable algorithms for dispersing autonomous robots. In IEEE SoutheastCon 2008, pages 545--550, 2008. [ bib | DOI ]
[31] Thomas Lochmatter, Pierre Roduit, Chris Cianci, Nikolaus Correll, Jacques Jacot, and Alcherio Martinoli. Swistrack - a flexible open source tracking software for multi-agent systems. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4004--4010, 2008. [ bib | DOI ]
[32] Christopher M. Cianci, Julien Nembrini, Amanda Prorok, and Alcherio Martinoli. Assembly of configurations in a networked robotic system: A case study on a reconfigurable interactive table lamp. In 2008 IEEE Swarm Intelligence Symposium, pages 1--7, 2008. [ bib | DOI ]
[33] Genci Capi, Genci Pojani, and Shin-Ichiro Kaneko. Evolution of task switching behaviors in real mobile robots. In 2008 3rd International Conference on Innovative Computing Information and Control, pages 495--495, 2008. [ bib | DOI ]
[34] Yasser Mohammad and Toyoaki Nishida. Getting feedback from a miniature robot. In 2008 International Conference on Information and Automation, pages 941--947, 2008. [ bib | DOI ]
[35] Yasser Mohammad and Toyoaki Nishida. Human adaptation to a miniature robot: Precursors of mutual adaptation. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, pages 124--129, 2008. [ bib | DOI ]
[36] Fady Alnajjar, Indra Bin Mohd Zin, and Kazuyuki Murase. A spiking neural network with dynamic memory for a real autonomous mobile robot in dynamic environment. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages 2207--2213, 2008. [ bib | DOI ]
[37] Christopher M. Cianci, Jim Pugh, and Alcherio Martinoli. Exploration of an incremental suite of microscopic models for acoustic event monitoring using a robotic sensor network. In 2008 IEEE International Conference on Robotics and Automation, pages 3290--3295, 2008. [ bib | DOI ]
[38] Leandro Soriano Marcolino and Luiz Chaimowicz. No robot left behind: Coordination to overcome local minima in swarm navigation. In 2008 IEEE International Conference on Robotics and Automation, pages 1904--1909, 2008. [ bib | DOI ]
[39] Stéphane Magnenat, Philippe Retornaz, Basilio Noris, Francesco Mondada, and Emanuele Menegatti. Scripting the swarm: event-based control of microcontroller-based robots. 01 2008. [ bib ]
[40] Masanori Sugisaka, H. Tanaka, Vlad Trifa, Christopher Cianci, and Dominique Guinard. Dynamic control of a robotic swarm using a service-oriented architecture. 01 2008. [ bib ]
[41] Onofrio Gigliotta and Stefano Nolfi. On the coupling between agent internal and agent/ environmental dynamics: Development of spatial representations in evolving autonomous robots. Connection Science - CONNECTION, 16, 04 2008. [ bib | DOI ]
[42] Amanda Whitbrook, Uwe Aickelin, and Jonathan Garibaldi. Genetic-algorithm seeding of idiotypic networks for mobile-robot navigation. volume 1, pages 5--14, 05 2008. [ bib ]
[43] Ke Cheng and Raj Dasgupta. Coalition game-based distributed coverage of unknown environments by robot swarms. pages 1191--1194, 01 2008. [ bib | DOI ]
[44] Valerio Sperati, Vito Trianni, and Stefano Nolfi. Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intelligence, 2:73--95, 12 2008. [ bib | DOI ]
[45] W. Burgard et al. Audio-Visual Detection of Multiple Chirping Robots. Intelligent Autonomous Systems 10: IAS-10, page 324, 2008. [ bib ]
[46] Mattias Jacobsson, Johan Bodin, and Lars Erik Holmquist. The see-puck: A platform for exploring human-robot relationships. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '08, page 141–144, New York, NY, USA, 2008. Association for Computing Machinery. [ bib | DOI | http ]
[47] Hadi Firouzi, Majid Nili Ahmadabadi, and Babak N. Araabi. A probabilistic reinforcement-based approach to conceptualization. International Journal of Computer and Information Engineering, 2(1):66 -- 73, 2008. [ bib | http ]
[48] Stéphane Magnenat, Basilio Noris, and Francesco Mondada. Aseba-challenge: An open-source multiplayer introduction to mobile robots programming. In Panos Markopoulos, Boris de Ruyter, Wijnand IJsselsteijn, and Duncan Rowland, editors, Fun and Games, pages 65--74, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[49] Iñaki Navarro, Álvaro Gutiérrez, Fernando Matía, and Félix Monasterio-Huelin. An approach to flocking of robots using minimal local sensing and common orientation. In Emilio Corchado, Ajith Abraham, and Witold Pedrycz, editors, Hybrid Artificial Intelligence Systems, pages 616--624, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[50] Louis-Emmanuel Martinet, Jean-Baptiste Passot, Benjamin Fouque, Jean-Arcady Meyer, and Angelo Arleo. Map-based spatial navigation: A cortical column model for action planning. In Christian Freksa, Nora S. Newcombe, Peter Gärdenfors, and Stefan Wölfl, editors, Spatial Cognition VI. Learning, Reasoning, and Talking about Space, pages 39--55, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[51] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Comparison of rbf network learning and reinforcement learning on the maze exploration problem. In Véra Kůrková, Roman Neruda, and Jan Koutník, editors, Artificial Neural Networks - ICANN 2008, pages 720--729, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[52] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Rule-based analysis of behaviour learned by evolutionary and reinforcement algorithms. In De-Shuang Huang, Donald C. Wunsch, Daniel S. Levine, and Kang-Hyun Jo, editors, Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, pages 284--291, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[53] Olivier Michel, Fabien Rohrer, and Yvan Bourquin. Rat's Life: A Cognitive Robotics Benchmark, pages 223--232. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. [ bib | DOI | http ]
[54] Takaaki Shimone, Daisuke Kurabayashi, Kunio Okita, and Tetsuro Funato. Implementation of Formation Transition System Using Synchronization in a Mobile Robot Group, pages 423--432. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. [ bib | DOI | http ]
[55] Winai Chonnaparamutt and Emilia I. Barakova. Robot simulation of sensory integration dysfunction in autism with dynamic neural fields model. In Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing -- ICAISC 2008, pages 741--751, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[56] Dieter Vanderelst and Emilia Barakova. Autonomous parsing of behavior in a multi-agent setting. In Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing -- ICAISC 2008, pages 1198--1209, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[57] Jim Pugh and Alcherio Martinoli. Distributed adaptation in multi-robot search using particle swarm optimization. In Minoru Asada, John C. T. Hallam, Jean-Arcady Meyer, and Jun Tani, editors, From Animals to Animats 10, pages 393--402, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[58] Louis-Emmanuel Martinet, Benjamin Fouque, Jean-Baptiste Passot, Jean-Arcady Meyer, and Angelo Arleo. Modelling the cortical columnar organisation for topological state-space representation, and action planning. In Minoru Asada, John C. T. Hallam, Jean-Arcady Meyer, and Jun Tani, editors, From Animals to Animats 10, pages 137--147, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [ bib ]
[59] Frederick Ducatelle, Alexander Förster, Gianni A. Di Caro, and Luca M. Gambardella. Supporting navigation in multi-robot systems through delay tolerant network communication. IFAC Proceedings Volumes, 42(22):25--30, 2009. 1st IFAC Workshop on Networked Robotics. [ bib | DOI | http ]
[60] Leandro Soriano Marcolino and Luiz Chaimowicz. Traffic control for a swarm of robots: Avoiding target congestion. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1955--1961, 2009. [ bib | DOI ]
[61] Alvaro Gutierrez, Alexandre Campo, Marco Dorigo, Jesus Donate, Felix Monasterio-Huelin, and Luis Magdalena. Open e-puck range amp; bearing miniaturized board for local communication in swarm robotics. In 2009 IEEE International Conference on Robotics and Automation, pages 3111--3116, 2009. [ bib | DOI ]
[62] Emilia I. Barakova and Winai Chonnaparamutt. Timing sensory integration. IEEE Robotics Automation Magazine, 16(3):51--58, 2009. [ bib | DOI ]
[63] Á. Gutiérrez, E. Tuci, and A. Campo. Evolution of Neuro-Controllers for Robots' Alignment using Local Communication. International Journal of Advanced Robotic Systems, 6(1), 2009. [ bib ]
[64] François Rey, Michele Leidi, Francesco Mondada, Hajime Asama, Haruhisa Kurokawa, Jun Ota, and Kosuke Sekiyama. Interactive mobile robotic drinking glasses. Distributed Autonomous Robotic Systems 8, 01 2009. [ bib | DOI ]
[65] Stanislav Slušn, Roman Neruda, and Vidnerova Petra. Learning algorithms for small mobile robots: Case study on maze exploration. CEUR Workshop Proceedings, 414, 08 2009. [ bib ]
[66] T. Otani and M. Koshino. Applying a path planner based on RRT to cooperative multirobot box-pushing. Artificial Life and Robotics, 13(2):418--422, 2009. [ bib ]
[67] Agostino Martinelli. Using the Distribution Theory to Simultaneously Calibrate the Sensors of a Mobile Robot. In RSS, page 000, Seattle, United States, June 2009. [ bib | http | .pdf ]
[68] Christian Balkenius, Jan Morén, Birger Johansson, and Magnus Johnsson. Ikaros: Building cognitive models for robots. Advanced Engineering Informatics, 24(1):40--48, 2010. Informatics for cognitive robots. [ bib | DOI | http ]
[69] Leonardo Marín, Marina Vallés, Ángel Valera, and Pedro Albertos. Implementation of a bug algorithm in the e-puck from a hybrid control viewpoint. In 2010 15th International Conference on Methods and Models in Automation and Robotics, pages 174--179, 2010. [ bib | DOI ]
[70] Amanda Whitbrook, Uwe Aickelin, and Jonathan Garibaldi. Real-world transfer of evolved artificial immune system behaviours between small and large scale robotic platforms. Evolutionary Intelligence, 3:123--136, 06 2010. [ bib | DOI ]
[71] Verena Fischer and Simon Hickinbotham. A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck, pages 1--12. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. [ bib | DOI | http ]
[72] Dario Floreano, Sara Mitri, and Julien Hubert. E-puck, pages 303--306. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. [ bib | DOI | http ]
[73] Luc Guyot and Fabien Rohrer. Teaching robotics with an open curriculum based on the e-puck robot , simulations and competitions. 2011. [ bib ]
[74] Wenguo Liu and Alan F.T. Winfield. Open-hardware e-puck linux extension board for experimental swarm robotics research. Microprocessors and Microsystems, 35(1):60--67, 2011. [ bib | DOI | http ]
[75] Verena Fischer and Simon Hickinbotham. Evolving a metabolic subsumption architecture for cooperative control of the e-puck. Memetic Computing, 3(4):231--244, Dec 2011. [ bib | DOI | http ]
[76] Yu. N. Zolotukhin, K. Yu. Kotov, A. S. Maltsev, A. A. Nesterov, M. N. Filippov, and A. P. Yan. Correction of transportation lag in the mobile robot control system. Optoelectronics, Instrumentation and Data Processing, 47(2):141--150, Apr 2011. [ bib | DOI | http ]
[77] Alan Winfield and Mehmet Erbas. On embodied memetic evolution and the emergence of behavioural traditions in robots. Memetic Computing, 3:261--270, 12 2011. [ bib | DOI ]
[78] Fernando Montes-Gonzalez and Fernando Aldana-Franco. The evolution of signal communication for the e-puck robot. In Ildar Batyrshin and Grigori Sidorov, editors, Advances in Artificial Intelligence, pages 466--477, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. [ bib ]
[79] Yaniss Touahmi, Nikolay Burlutskiy, Kongwoo Lee, and Beomhee Lee. Congestion avoidance for multiple micro-robots using the behaviour of fish schools. International Journal of Advanced Robotic Systems, 9(3):67, 2012. [ bib | DOI | arXiv | www: ]
[80] F. Rohrer and O. Michel. Improving support for e-puck robot in webots mobile robots simulation software. 2012. [ bib ]
[81] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Roland Y. Siegwart, and Paul A. Beardsley. Image and animation display with multiple mobile robots. The International Journal of Robotics Research, 31:753 -- 773, 2012. [ bib ]
[82] Jianhua Yang, Yabo Liu, Z. Wu, and Min Yao. The evolution of cooperative behaviours in physically heterogeneous multi-robot systems. International Journal of Advanced Robotic Systems, 9:1, 12 2012. [ bib | DOI ]
[83] Jianing Chen, Melvin Gauci, Michael J. Price, and Roderich Groß. Segregation in swarms of e-puck robots based on the brazil nut effect. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS '12, page 163–170, Richland, SC, 2012. International Foundation for Autonomous Agents and Multiagent Systems. [ bib ]
[84] Lachlan Murray, Jon Timmis, and Andy Tyrrell. Self-reconfigurable modular e-pucks. In Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen, Andries P. Engelbrecht, Roderich Groß, and Thomas Stützle, editors, Swarm Intelligence, pages 133--144, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. [ bib ]
[85] Liangbing Feng, Masanao Obayashi, Takashi Kuremoto, and Kunikazu Kobayashi. Optimization and verification for a robot control system based on learning petri net model. In Dehuai Yang, editor, Informatics in Control, Automation and Robotics, pages 815--823, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. [ bib ]
[86] Khoukhi Amar and Shahab Mohamed. Stabilized feedback control of unicycle mobile robots. International Journal of Advanced Robotic Systems, 10(4):187, 2013. [ bib | DOI | arXiv | www: ]
[87] Lachlan Murray, Jon Timmis, and Andy Tyrrell. Modular self-assembling and self-reconfiguring e-pucks. Swarm Intelligence, 7(2):83--113, Sep 2013. [ bib | DOI | http ]
[88] Mehmet S. Guzel, John Erwin, and Wan Nurshazwani Wan Zakaria. Vision based object recognition of e-puck mobile robot for warehouse application. International Journal of Integrated Engineering, 6(3), 1 2014. [ bib | http ]
[89] Melvin Gauci, Jianing Chen, Wei Li, Tony J. Dodd, and Roderich Groß. Self-organized aggregation without computation. The International Journal of Robotics Research, 33(8):1145--1161, 2014. [ bib | DOI | arXiv | www: ]
[90] Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo, and Gianni A. Di Caro. zeppelin: Distributed path planning using an overhead camera network. International Journal of Advanced Robotic Systems, 11(8):119, 2014. [ bib | DOI | arXiv | www: ]
[91] Micael S. Couceiro, Patricia A. Vargas, and Rui P. Rocha. Bridging the reality gap between the webots simulator and e-puck robots. Robotics and Autonomous Systems, 62(10):1549--1567, 2014. [ bib | DOI | http ]
[92] Guillaume Sartoretti, Max-Olivier Hongler, Marcelo Elias de Oliveira, and Francesco Mondada. Decentralized self-selection of swarm trajectories: from dynamical systems theory to robotic implementation. Swarm Intelligence, 8(4):329--351, Dec 2014. [ bib | DOI | http ]
[93] Information Association, Daniel Alves, Eduardo Elael, Guilherme Strachan, Guilherme Carvalho, Marco Xaud, Marcos Couto, Rafael Mendonça, Renan Freitas, Thiago Santos, Vanessa Gonçalves, Luiza Mourelle, Nadia Nedjah, Nelson Maculan, Priscila Lima, and Felipe França. A Swarm Robotics Approach to Decontamination, pages 955--969. 01 2014. [ bib | DOI ]
[94] Francois Francezon. Towards "skynet" via heterogeneous manets. 08 2014. [ bib | DOI ]
[95] Alan F. T. Winfield, Christian Blum, and Wenguo Liu. Towards an ethical robot: Internal models, consequences and ethical action selection. In Michael Mistry, Aleš Leonardis, Mark Witkowski, and Chris Melhuish, editors, Advances in Autonomous Robotics Systems, pages 85--96, Cham, 2014. Springer International Publishing. [ bib ]
[96] Yuri K. Lopes, André B. Leal, Tony J. Dodd, and Roderich Groß. Application of supervisory control theory to swarms of e-puck and kilobot robots. In Marco Dorigo, Mauro Birattari, Simon Garnier, Heiko Hamann, Marco Montes de Oca, Christine Solnon, and Thomas Stützle, editors, Swarm Intelligence, pages 62--73, Cham, 2014. Springer International Publishing. [ bib ]
[97] Pablo Tarquino and Kevin Nickels. Programming an E-Puck Robot to Create Maps of Virtual and Physical Environments, pages 13--28. Springer International Publishing, Cham, 2014. [ bib | DOI | http ]
[98] Arne Brutschy, Lorenzo Garattoni, Manuele Brambilla, Gianpiero Francesca, Giovanni Pini, Marco Dorigo, and Mauro Birattari. The tam: abstracting complex tasks in swarm robotics research. Swarm Intelligence, 9(1):1--22, Mar 2015. [ bib | DOI | http ]
[99] Ali Abdul Khaliq and Alessandro Saffiotti. Stigmergy at work: Planning and navigation for a service robot on an rfid floor. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1085--1092, 2015. [ bib | DOI ]
[100] Jianing Chen, Melvin Gauci, Wei Li, Andreas Kolling, and Roderich Groß. Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Transactions on Robotics, 31(2):307--321, 2015. [ bib | DOI ]
[101] Andreagiovanni Reina, Mattia Salvaro, Gianpiero Francesca, Lorenzo Garattoni, Carlo Pinciroli, Marco Dorigo, and Mauro Birattari. Augmented reality for robots: Virtual sensing technology applied to a swarm of e-pucks. In 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 1--6, 2015. [ bib | DOI ]
[102] Wei Li, Melvin Gauci, and Roderich Groß. Turing learning: a metric-free approach to inferring behavior and its application to swarms. Swarm Intelligence, 10(3):211--243, Sep 2016. [ bib | DOI | http ]
[103] Yuri K. Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd, and Roderich Groß. Supervisory control theory applied to swarm robotics. Swarm Intelligence, 10(1):65--97, Mar 2016. [ bib | DOI | http ]
[104] =., G., A., and C. Software infrastructure for e-puck ( and tam ). 2016. [ bib ]
[105] Rusalky del Angel Ortiz, Carlos M. Contreras, Ana G. Gutiérrez-Garcia, and Montes Fernando M. González. Social interaction test between a rat and a robot: A pilot study. International Journal of Advanced Robotic Systems, 13(1):4, 2016. [ bib | DOI | arXiv | www: ]
[106] Marwah M. Almasri, Khaled M. Elleithy, and Abrar M. Alajlan. Development of efficient obstacle avoidance and line following mobile robot with the integration of fuzzy logic system in static and dynamic environments. In 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pages 1--6, 2016. [ bib | DOI ]
[107] Stefan M. Trenkwalder, Yuri Kaszubowski Lopes, Andreas Kolling, Anders Lyhne Christensen, Radu Prodan, and Roderich Groß. Openswarm: An event-driven embedded operating system for miniature robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4483--4490, 2016. [ bib | DOI ]
[108] G.A. Vargas, O.G. Rubiano, Ricardo Castillo Estepa, Oscar Avilés Sánchez, and Mauricio Mauledoux. Simulation of e-puck path planning in webots. International Journal of Applied Engineering Research, 11:9772--9775, 01 2016. [ bib ]
[109] Saleem Sumbal and Marc Carreras. Environment detection and path planning using the e-puck robot. International research journal of engineering and technology, 3, 01 2016. [ bib | DOI ]
[110] Eduardo Castello, Tomoyuki Yamamoto, Fabio Dalla Libera, Wenguo Liu, Alan F. T. Winfield, Yutaka Nakamura, and Hiroshi Ishiguro. Adaptive foraging for simulated and real robotic swarms: the dynamical response threshold approach. Swarm Intelligence, 10(1):1--31, Mar 2016. [ bib | DOI | http ]
[111] Dušan Nemec, Aleš Janota, Marián Hruboš, Michal Gregor, and Rastislav Pirník. Mutual acoustic identification in the swarm of e-puck robots. International Journal of Advanced Robotic Systems, 14(3):1729881417710794, 2017. [ bib | DOI | arXiv | www: ]
[112] Muhammad Habib Mahmood. and Pere Ridao Rodriguez. Localization and mapping of cheap educational robot with low bandwidth noisy ir sensors. In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - ICPRAM,, pages 583--590. INSTICC, SciTePress, 2017. [ bib | DOI ]
[113] Alan G. Millard, Russell Joyce, James A. Hilder, Cristian Fleşeriu, Leonard Newbrook, Wei Li, Liam J. McDaid, and David M. Halliday. The pi-puck extension board: A raspberry pi interface for the e-puck robot platform. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 741--748, 2017. [ bib | DOI ]
[114] Muhanad H. Mohammed Alkilabi, Aparajit Narayan, and Elio Tuci. Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies. Swarm Intelligence, 11(3):185--209, Dec 2017. [ bib | DOI | http ]
[115] Leandro Soriano Marcolino, Yuri Tavares dos Passos, Álvaro Antônio Fonseca de Souza, Andersoney dos Santos Rodrigues, and Luiz Chaimowicz. Avoiding target congestion on the navigation of robotic swarms. Autonomous Robots, 41(6):1297--1320, Aug 2017. [ bib | DOI | http ]
[116] Fernando Perez-Diaz, Ruediger Zillmer, and Roderich Groß. Control of synchronization regimes in networks of mobile interacting agents. Phys. Rev. Applied, 7:054002, May 2017. [ bib | DOI | http ]
[117] Shu Wan Goh. Swarm algorithm target seeking in unknown environment. 2018. [ bib ]
[118] Anıl Özdemir, Melvin Gauci, Salomé Bonnet, and Roderich Groß. Finding consensus without computation. IEEE Robotics and Automation Letters, 3(3):1346--1353, 2018. [ bib | DOI ]
[119] Gina M.B. de Oliveira, Reslley G.O. Silva, Laurence R. do Amaral, and Luiz G.A. Martins. An evolutionary-cooperative model based on cellular automata and genetic algorithms for the navigation of robots under formation control. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pages 426--431, 2018. [ bib | DOI ]
[120] Wuyi Luo, Lang Tan, Qinghai Gong, and Jiarun Liu. Implementation of pursuit-evasion differential games using simple fuzzy system based on e-puck robot system*. In 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), pages 1--6, 2018. [ bib | DOI ]
[121] Ali Noormohammadi-Asl, Mohsen Saffari, and Mohammad Teshnehlab. Neural control of mobile robot motion based on feedback error learning and mimetic structure. In Electrical Engineering (ICEE), Iranian Conference on, pages 778--783, 2018. [ bib | DOI ]
[122] Eleni Vrochidou, Michail Manios, George A. Papakostas, Charalabos N. Aitsidis, and Fotis Panagiotopoulos. Open-source robotics: Investigation on existing platforms and their application in education. In 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1--6, 2018. [ bib | DOI ]
[123] Lenka Pitonakova, Alan Winfield, and Richard Crowder. Recruitment near worksites facilitates robustness of foraging e-puck swarms to global positioning noise. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4276--4281, 2018. [ bib | DOI ]
[124] Chi-Chung Chen and Handdeut Chang. Design of robots formation controllers using evolutionary fuzzy systems. 2018. [ bib ]
[125] Alan G. Millard, Richard Redpath, Alistair M. Jewers, Charlotte Arndt, Russell Joyce, James A. Hilder, Liam J. McDaid, and David M. Halliday. Ardebug: An augmented reality tool for analysing and debugging swarm robotic systems. Frontiers in Robotics and AI, 5:87, 2018. [ bib | DOI | http ]
[126] Elio Tuci, Muhanad H. M. Alkilabi, and Otar Akanyeti. Cooperative object transport in multi-robot systems: A review of the state-of-the-art. Frontiers in Robotics and AI, 5:59, 2018. [ bib | DOI | http ]
[127] Daniel Strömbom and Andrew J. King. Robot collection and transport of objects: A biomimetic process. Frontiers in Robotics and AI, 5:48, 2018. [ bib | DOI | http ]
[128] Simon Jones, Matthew Studley, Sabine Hauert, and Alan Frank Thomas Winfield. A two teraflop swarm. Frontiers in Robotics and AI, 5:11, 2018. [ bib | DOI | http ]
[129] Qiaoyu Li, Xiaolong Yang, Yuying Zhu, and Jianlei Zhang. Self-organized task allocation in a swarm of e-puck robots. In Zhidong Deng, editor, Proceedings of 2017 Chinese Intelligent Automation Conference, pages 153--160, Singapore, 2018. Springer Singapore. [ bib ]
[130] Luiz G. A. Martins, Rafael da P. Cândido, Mauricio C. Escarpinati, Patricia A. Vargas, and Gina M. B. de Oliveira. An improved robot path planning model using cellular automata. In Manuel Giuliani, Tareq Assaf, and Maria Elena Giannaccini, editors, Towards Autonomous Robotic Systems, pages 183--194, Cham, 2018. Springer International Publishing. [ bib ]
[131] Muhanad H. Mohammed Alkilabi, Aparajit Narayan, Chuan Lu, and Elio Tuci. Evolving Group Transport Strategies for e-Puck Robots: Moving Objects Towards a Target Area, pages 503--516. Springer International Publishing, Cham, 2018. [ bib | DOI | http ]
[132] Ken Hasselmann, Frédéric Robert, and Mauro Birattari. Automatic design of communication-based behaviors for robot swarms. In Marco Dorigo, Mauro Birattari, Christian Blum, Anders L. Christensen, Andreagiovanni Reina, and Vito Trianni, editors, Swarm Intelligence, pages 16--29, Cham, 2018. Springer International Publishing. [ bib ]
[133] Claudiney R. Tinoco, Danielli A. Lima, and Gina M. B. Oliveira. An improved model for swarm robotics in surveillance based on cellular automata and repulsive pheromone with discrete diffusion. International Journal of Parallel, Emergent and Distributed Systems, 34(1):53--77, 2019. [ bib | DOI | arXiv | www: ]
[134] Dušan Nemec, Michal Gregor, Emília Bubeníková, Marián Hruboš, and Rastislav Pirník. Improving the hybrid a* method for a non-holonomic wheeled robot. International Journal of Advanced Robotic Systems, 16(1):1729881419826857, 2019. [ bib | DOI | arXiv | www: ]
[135] Gina M. B. Oliveira, Reslley G. O. Silva, Giordano B. S. Ferreira, Micael S. Couceiro, Laurence R. do Amaral, Patricia A. Vargas, and Luiz Gustavo A. Martins. A cellular automata-based path-planning for a cooperative and decentralized team of robots. In 2019 IEEE Congress on Evolutionary Computation (CEC), pages 739--746, 2019. [ bib | DOI ]
[136] Alexandru-Calin Stan and Mihaela Oprea. A case study of multi-robot systems coordination using pso simulated in webots. In 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages 1--5, 2019. [ bib | DOI ]
[137] Anıl Özdemir, Melvin Gauci, Andreas Kolling, Matthew D. Hall, and Roderich Groß. Spatial coverage without computation. In 2019 International Conference on Robotics and Automation (ICRA), pages 9674--9680, 2019. [ bib | DOI ]
[138] Rodrigo Chaves, Paulo Rezeck, and Luiz Chaimowicz. Swarmap: Occupancy grid mapping with a robotic swarm. In 2019 19th International Conference on Advanced Robotics (ICAR), pages 727--732, 2019. [ bib | DOI ]
[139] Chunyan Wang, Hilton Tnunay, Zongyu Zuo, Barry Lennox, and Zhengtao Ding. Fixed-time formation control of multirobot systems: Design and experiments. IEEE Transactions on Industrial Electronics, 66(8):6292--6301, 2019. [ bib | DOI ]
[140] Natalia Basimova and Pavel Chebotarev. Clustering as a means of leader selection in consensus networks, 2019. [ bib | arXiv ]
[141] Siobhan Duncan. Taking stigmergy out of the lab and into the field: Student research abstract. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC '19, page 961–964, New York, NY, USA, 2019. Association for Computing Machinery. [ bib | DOI | http ]
[142] Kongtao Zhu, Chensheng Cheng, Can Wang, and Feihu Zhang. Wall-following control of multi-robot based on moving target tracking and obstacle avoidance. In Fuchun Sun, Huaping Liu, and Dewen Hu, editors, Cognitive Systems and Signal Processing, pages 534--541, Singapore, 2019. Springer Singapore. [ bib ]
[143] Yuvraj Sahni, Jiannong Cao, and Shan Jiang. Middleware for Multi-robot Systems, pages 633--673. Springer International Publishing, Cham, 2019. [ bib | DOI | http ]
[144] Daisuke Inoue, Daisuke Murai, and Hiroaki Yoshida. Stochastic self-organizing control for swarm robot systems. In Ying Tan, Yuhui Shi, and Ben Niu, editors, Advances in Swarm Intelligence, pages 405--416, Cham, 2019. Springer International Publishing. [ bib ]
[145] Miquel Kegeleirs, David Garzón Ramos, and Mauro Birattari. Random walk exploration for swarm mapping. In Kaspar Althoefer, Jelizaveta Konstantinova, and Ketao Zhang, editors, Towards Autonomous Robotic Systems, pages 211--222, Cham, 2019. Springer International Publishing. [ bib ]
[146] Adrian Rubio-Solis and Uriel Martinez-Hernandez. Hierarchical behaviour for object shape recognition using a swarm of robots. In Uriel Martinez-Hernandez, Vasiliki Vouloutsi, Anna Mura, Michael Mangan, Minoru Asada, Tony J. Prescott, and Paul F.M.J. Verschure, editors, Biomimetic and Biohybrid Systems, pages 355--359, Cham, 2019. Springer International Publishing. [ bib ]
[147] S. M. Sombolestan, A. Rasooli, and S. Khodaygan. Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning. Journal of Ambient Intelligence and Humanized Computing, 10(5):1841--1850, May 2019. [ bib | DOI | http ]
[148] Stefan M. Trenkwalder, Iñaki Esnaola, Yuri Kaszubowski Lopes, Andreas Kolling, and Roderich Groß. Swarmcom: an infra-red-based mobile ad-hoc network for severely constrained robots. Autonomous Robots, 44(1):93--114, Jan 2020. [ bib | DOI | http ]
[149] Christian Balkenius, Birger Johansson, and Trond A Tjøstheim. Ikaros: A framework for controlling robots with system-level brain models. International Journal of Advanced Robotic Systems, 17(3):1729881420925002, 2020. [ bib | DOI | arXiv | www: ]
[150] Israel C.S. Rocha, Carlos H.C. Ribeiro, and Cinara Ghedini. Effectiveness of embedded topology controllers in a multi-robot network. IFAC-PapersOnLine, 53(2):9740--9745, 2020. 21st IFAC World Congress. [ bib | DOI | http ]
[151] Ken Hasselmann and M. Birattari. Modular automatic design of collective behaviors for robots endowed with local communication capabilities. PeerJ Computer Science, 6, 2020. [ bib ]
[152] Nafee Mourad, Ali Ezzeddine, Babak Nadjar Araabi, and Majid Nili Ahmadabadi. Learning from demonstrations and human evaluative feedbacks: Handling sparsity and imperfection using inverse reinforcement learning approach. Journal of Robotics, 2020:3849309, Jan 2020. [ bib | DOI | http ]
[153] Weijia Yao, Héctor Garcia de Marina, and Ming Cao. Vector field guided path following control: Singularity elimination and global convergence. In 2020 59th IEEE Conference on Decision and Control (CDC), pages 1543--1549, 2020. [ bib | DOI ]
[154] Yating Zheng and Zhangang Han. Experimental implementation of collective motion based on swarm robotic control. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 1526--1531, 2020. [ bib | DOI ]
[155] Yuri Kaszubowski Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd, and Roderich Groß. Supervisory control of robot swarms using public events. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 7193--7199, 2020. [ bib | DOI ]
[156] Hamilton J. M. Lopes and Danielli A. Lima. Cellular automata in path planning navigation control applied in surveillance task using the e-puck architecture. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 1117--1122, 2020. [ bib | DOI ]
[157] Topan Try Harmanda, Karlisa Priandana, and Medria K.D Hardhienata. Development of localization technique using trilateration algorithm for e-puck2 robot. In 2020 International Conference on Smart Technology and Applications (ICoSTA), pages 1--6, 2020. [ bib | DOI ]
[158] Samuel C. S. Nametala, Luiz G. A. Martins, and Gina M. B. Oliveira. A new distance diffusion algorithm for a path-planning model based on cellular automata. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages 1--8, 2020. [ bib | DOI ]
[159] Valeria Villani, Beatrice Capelli, Cristian Secchi, Cesare Fantuzzi, and Lorenzo Sabattini. Humans interacting with multi-robot systems: a natural affect-based approach. Autonomous Robots, 44(3):601--616, Mar 2020. [ bib | DOI | http ]
[160] Mehmet Dinçer Erbaş and İsmail Hakkı Parlak. Evaluation of vocal communication in a robot collective. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8:2029 -- 2040, 2020. [ bib | DOI ]
[161] Alan Millard, Russell Joyce, and Ian Gray. Human-swarm interaction via e-ink displays. 05 2020. [ bib ]
[162] Andrei Florea and Cătălin Buiu. An Overview of Swarm Robotics, pages 58--69. 01 2020. [ bib | DOI ]
[163] David Garzón Ramos and Mauro Birattari. Automatic design of collective behaviors for robots that can display and perceive colors. Applied Sciences, 10(13), 2020. [ bib | DOI | http ]
[164] Muhammad Salman, David Garzón Ramos, Ken Hasselmann, and Mauro Birattari. Phormica: Photochromic pheromone release and detection system for stigmergic coordination in robot swarms. Frontiers in Robotics and AI, 7:195, 2020. [ bib | DOI | http ]
[165] Volker Strobel, Eduardo Castelló Ferrer, and Marco Dorigo. Blockchain technology secures robot swarms: A comparison of consensus protocols and their resilience to byzantine robots. Frontiers in Robotics and AI, 7:54, 2020. [ bib | DOI | http ]
[166] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm robotic behaviors and current applications. Frontiers in Robotics and AI, 7:36, 2020. [ bib | DOI | http ]
[167] Jacob M. Allen, Russell Joyce, Alan G. Millard, and Ian Gray. The pi-puck ecosystem: Hardware and software support for the e-puck and e-puck2. In Marco Dorigo, Thomas Stützle, Maria J. Blesa, Christian Blum, Heiko Hamann, Mary Katherine Heinrich, and Volker Strobel, editors, Swarm Intelligence, pages 243--255, Cham, 2020. Springer International Publishing. [ bib ]
[168] Alexandre Pacheco, Volker Strobel, and Marco Dorigo. A blockchain-controlled physical robot swarm communicating via an ad-hoc network. In Marco Dorigo, Thomas Stützle, Maria J. Blesa, Christian Blum, Heiko Hamann, Mary Katherine Heinrich, and Volker Strobel, editors, Swarm Intelligence, pages 3--15, Cham, 2020. Springer International Publishing. [ bib ]
[169] M. Kirtas, K. Tsampazis, N. Passalis, and A. Tefas. Deepbots: A webots-based deep reinforcement learning framework for robotics. In Ilias Maglogiannis, Lazaros Iliadis, and Elias Pimenidis, editors, Artificial Intelligence Applications and Innovations, pages 64--75, Cham, 2020. Springer International Publishing. [ bib ]
[170] Hamilton J.M. Lopes and Danielli A. Lima. Evolutionary tabu inverted ant cellular automata with elitist inertia for swarm robotics as surrogate method in surveillance task using e-puck architecture. Robotics and Autonomous Systems, 144:103840, 2021. [ bib | DOI | http ]
[171] Adriano M.C. Rezende, Vinicius M. Gonçalves, and Luciano C.A. Pimenta. Safe coordination of robots in cyclic paths. ISA Transactions, 109:126--140, 2021. [ bib | DOI | http ]
[172] Neuro-evolutionary robotics: A gap between simulation and reality. 2021. [ bib ]
[173] Chanelle Lee, Jonathan Lawry, and Alan F. T. Winfield. Negative updating applied to the best-of-n problem with noisy qualities. Swarm Intelligence, 15(1):111--143, Jun 2021. [ bib | DOI | http ]
[174] Topan Try Harmanda, Medria K. D Hardhienata, and Karlisa Priandana. Development of multi-robot systems using particle swarm optimization algorithm for task allocation. In 2021 IEEE Region 10 Symposium (TENSYMP), pages 1--8, 2021. [ bib | DOI ]
[175] Pranav Kedia and Madhav Rao. Gengrid: A generalised distributed experimental environmental grid for swarm robotics. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1910--1917, 2021. [ bib | DOI ]
[176] Yahya Muhammad Adam, Nohaidda Binti Sariff, and Nasir A. Algeelani. E-puck mobile robot obstacles avoidance controller using the fuzzy logic approach. In 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), pages 107--112, 2021. [ bib | DOI ]
[177] Tohid Kargar Tasooji and Horacio J. Marquez. Cooperative localization in mobile robots using event-triggered mechanism: Theory and experiments. IEEE Transactions on Automation Science and Engineering, pages 1--13, 2021. [ bib | DOI ]
[178] Ken Hasselmann, Antoine Ligot, Julian Ruddick, and Mauro Birattari. Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms. Nature Communications, 12(1):4345, Jul 2021. [ bib | DOI | http ]
[179] Qihao Shan and Sanaz Mostaghim. Discrete collective estimation in swarm robotics with distributed bayesian belief sharing. Swarm Intelligence, Sep 2021. [ bib | DOI | http ]
[180] Eduardo Castelló Ferrer, Thomas Hardjono, Alex Pentland, and Marco Dorigo. Secure and secret cooperation in robot swarms. Science Robotics, 6(56):eabf1538, 2021. [ bib | DOI | arXiv | http ]
[181] Miquel Kegeleirs, Giorgio Grisetti, and Mauro Birattari. Swarm slam: Challenges and perspectives. Frontiers in Robotics and AI, 8:23, 2021. [ bib | DOI | http ]
Last Updated on Tuesday, 16 November 2021 15:18
 
e-puck education robot, Powered by Joomla!